咨询热线

13302910083
网站导航
新闻资讯
当前位置: 网站首页>新闻资讯>AI算法在PCBA光学检测AOI中的应用

AI算法在PCBA光学检测AOI中的应用

时间:2022-03-12 09:49:47 点击次数:3

当PCB从业者尝试将AI技术落地时,并不是因为AI的时尚,而是需要利用AI技术解决PCB制造中的实际问题,进一步提高生产效率和产品质量甚至取代部分知识工作者。究竟AI可以在AOI工序中做些什么?可应用于哪些环节等问题是接下来要讨论的内容?

1 卷积运算

卷积运算的定义:卷积运算广泛应用于信号与线性系统、数字信号处理和图像处理等系统中,从数学的定义(公式1)来讲,卷积就是一个函数(单位响应或卷积核)在另一个函数(输入信号)上的加权叠加。

在计算机视觉领域中,卷积核定义了某种模式,卷积运算是在计算每个位置与该模式的相似程度,当前位置与该模式越像,响应越强。卷积核通常为较小尺寸的奇数行列矩阵,数字图像是相对较大尺寸的2维(多维或者多通道特征图)矩阵,作卷积运算时,以滑动窗口的形式,从左至右、从上至下,每个通道的对应位置相乘求和。若将卷积核看成权重(Weight),并拉成向量记为w,图像对应位置的像素拉成向量记为x,则该位置卷积结果可表示为公式(2),即向量内积+偏置(Bias)。

2.深度神经网络

神经网络,是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型,也是一种受生物学启发的编程范式,可以让计算机对观测数据进行学习,找出解决问题的优化途径。人工神经网络吸取了生物神经网络两个极为重要的概念——计算单元和连接权重。接下来,以大家熟悉的“AOI设备评估”的例子来理解神经元的工作方式。

前面简单介绍了AI人工智能的基本概念,并提到AI中常用的计算机视觉算法,这些视觉算法在插件AOI中也被广泛应用。AOI自动光学检测是由人工目视演变而来,工作原理为:首先通过视觉算法在标准的CAM资料上“学习”到所需的图像特征信息,然后在每一块PCB的扫描图像上利用在训练集上学习好的模型进行特征提取,得到的特征图像与标准资料进行对比,根据给定规则(检测标准)报告出需要检测的问题点。AOI既然作为机算机视觉的典型应用,就有与计算机视觉相同的难点。

作为DIP制造中品质控制的关键工序,插件AOI工序中,检修机上的确认过程需要较多的人工参与,操作人员需要按假缺点、修理缺点、报废缺点进行分类,并在板上做相应的修理或标记动作,同时记录品质报表。在这些环节中,如何提高生产效率、降低生产成本(尤其是劳动力成本)以及减少人为因素造成的品质异常(搬运过程中的擦花、确认过程中的误判和漏判等)是行业关心的问题。

AI技术虽然已经在AOI图像处理中得到广泛应用,但检修环节依然有巨大的应用场景和空间,尤其在AI算法快速迭代的今天,未来的检修系统将是集成各种AI算法的智能检修系统。当然,这些AI算法可以是简单的回归、分类算法,也可以复杂的强化学习、结构化学习,强人工智能和弱人工智能本来就是当今存在争议的哲学问题。

标签:,,,,,

苏州迈思泰克精密设备有限公司  邮箱:sales@lingtest.cn 苏ICP备2021173082-1